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Abstract 

The program SWAN (Simulating WAves Nearshore) is a third-generation wave model 
used to compute the spectra of random short-crested, wind-generated waves on Eulerian 
grids. No parallel version of the SWAN code for parallel high-performance computing 
(HPC) platforms currently exists. Work on a parallel version is in its early stages and is 
unlikely to be available in the near future. This study introduces a quasi time-accurate 
method in which the individual integrations can be regarded as disjointed so that coarse-
grain parallelism may be exploited. The Message Passing Interface (MPI) system is used 
to pass the data to the parallel processes. For a test case with 72 hours of data, a speedup 
of 59 using 72 processes was observed. The quasi time-accurate wall time was reduced 
from 3.34 hours to 3.31 minutes. The wall time for the time-accurate 72-hour 
computation was 4.58 hours. The differences between the time-accurate results and the 
quasi time-accurate results were very small for the test case examined. In fact, error 
norms showed the quasi time-accurate version to be more accurate than the time-accurate 
version at three of the five test sites. Thus the MPI quasi time-accurate approach may 
play an important interim role until an efficient time-accurate version of SWAN becomes 
available. The efficiency of the MPI quasi time-accurate approach opens the possibility 
of using refined grids and more frequencies and/or directional angles than is possible 
with the nonparallel time-accurate version. 
 
Introduction 
One of the major challenges in ocean modeling is the accurate prediction of nearshore 
wave conditions required for environmental impact studies of erosion and sediment 
transport and also equally important in naval operations. The SWAN code has been 
developed specifically for nearshore zones where finite-depth effects become important. 
SWAN has been designed for nonstationary computations but can also be used for 
stationary computations. For nonstationary computations, an implicit time-accurate 
algorithm is employed to propogate waves on either a spherical or Cartesian grid. Booij 
et al. (1999) and Ris et al. (1999) give the details of the SWAN code. The SWAN USER 
MANUAL – see Holthuijsen et al. (1999) – can be downloaded from the SWAN Web 
site (http://www.swan.ct.tudelft.nl). SWAN is an open source code. 
 
At present, there is no parallel version of the SWAN code for high-performance 
computing (HPC) platforms. Work on a parallel version is in its early stages, and an 
efficient time-accurate version is unlikely to be available in the next 1-2 years. At 
present, the SWAN code is run on a single processor that can result in very long CPU 
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times for some simulations and thus is prohibitive for Department of Defense (DoD) 
applications for which rapid results are desired.  
 
Parallelism can occur at either the coarse-grain level or the fine-grain level. Fine-grain 
parallelism occurs at the finest level possible in a code, for example, the most inner do 
loop level or parallelization of a function. Coarse-grain parallelism is the largest part of a 
code that can be run on different processes. Examples include domain-decomposition 
methods, multiblock codes, codes using data partitioning, and single programs with 
multiple data where domains, blocks, partitions, and data sets are executed on different 
processes. For maximum efficiency, both coarse-grain and fine-grain parallelism should 
be exploited by combining the Message Passing Interface (MPI) system with OpenMP, 
MPI with Pthreads, or some other combination. 
 
In order to arrive at a parallel version of the SWAN code, this study introduces a quasi 
time-accurate approach that allows coarse-grain parallelism to be exploited. In this 
approach, the time dependency enters the computation through time-varying boundary 
spectra, wind fields, and current fields; the wave action transport equation is solved as a 
stationary problem at each time output point. This approach has the advantage that the 
solution procedure changes from a sequential one to a single program with multiple data, 
where coarse-grain parallelism can be implemented using the MPI message-passing 
system.  
 
While the quasi time-accurate approach is new to the SWAN code where the time-
accurate solver is used, it is the basis for the STWAVE code, which does not have a time-
accurate solver. The developers of the STWAVE code, Smith et al. (2001), solve a 
steady-state spectral wave equation in the STWAVE code. Smith et al. (2001) explained 
the basis for solving the stationary wave equation at a specific time output. This approach 
is applied here to the entire range of time-varying boundary spectra and wind fields. 
Smith et al. (2001) state that solving a steady-state equation “is appropriate for wave 
conditions that vary more slowly than the time it takes for waves to transit the 
computational grid. For wave generation, the steady-state assumption means that the 
winds have remained sufficiently long for the waves to attain fetch-limited or fully 
developed conditions.” As a rule, Smith et al. (2001) apply STWAVE on meshes not 
more than five kilometers offshore (the direction from which the waves are arriving). 
This will be referred to as assumption #1. 
 
General approach 
The SWAN code was developed at the Delft University of Technology and is continually 
being upgraded. Consequently, the basic guideline followed here was to make as few as 
possible changes to the SWAN code itself. In that way, new releases would require only 
small modifications to run in parallel using the quasi time-accurate approach. In the MPI 
quasi time-accurate approach developed in this study, all the MPI calls are contained in 
the master program, which calls the SWAN program. The use of the MPI system to 
manage the data and launch the computations is a very simple and attractive choice (a 
single job with many processes). Rather than use the MPI system, one could write script 
files to submit the different data as different jobs. For example, instead of submitting one 
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job using 72 processors, one submits 72 different jobs requiring one processor and 
devises a logic script that would tell the user when all the different jobs have been 
completed. The MPI approach seems simpler and more attractive. 
 
Modifications to the SWAN source code 
The program module SWAN was changed to a subroutine which is called by a front end 
interface program that reads the user’s INPUT file and creates the files needed by the 
individual processes. The changes to the SWAN code consisted of adding common 
statements that pass the process ID and the number of processes to SWAN subroutines 
reading or writing files. The process ID and number of processes are used to control print 
statements and to identify the input, output, boundary spectra, and wind files for each 
process.  
 
Changes to the SWAN input file 
Modifications to the SWAN input file are given in Figure 1, which illustrates the 
simplicity of the MPI implementation. Figure 1 shows the base INPUT file, that is, the 
input file from which all the other process files are created. The only change for MPI runs 
is the addition of “DATE_” before any file read or written on the different processors. 
For brevity, only nine COMPUTE statements are shown. A more general method is 
possible that avoids having to add the “DATE_” prefix. 
  
PROJ ’MPI_SWAN input file’ ’100’ 
SET CART 
MODE NONSTATIONARY TWODIMENSIONAL 
GEN3 JANS 
FRIC JON 
QUAD 
OFF BREAKING 
COORD  SPHERICAL 
CGRID REGULAR   284.  35.  0.  2.0  2.0  96  96 CIRCLE 24 0.04     1.0 24 
 INPGRID BOTTOM  REGULAR   284.  35.  0.    192  192    0.010416667  0.010416667 
 READINP BOTTOM 1. ’./DATE_sub2b_SWN_192x192.dep’ 2 FREE 
$ 
 INPGRID WIND REGULAR     277.5           10.0000   0.  135  120    0.5  0.5 & 
    NONSTAT 9508290000  1.0  HR  9509130000 
 READINP WIND 1.0 SERIES ’DATE_swan_wind.inp’ 2 FREE 
$ 
 BOUNDNEST2 WAMNEST ’DATE_LUISsub2_cdate_sp.fbi’ UNFORMATTED WKSTAT 284.  35.0 
$ 
 INITIAL DEFAULT 
$ 
$************ OUTPUT REQUESTS ************************* 
POINTS ’44014’   FILE ’DATE_44014_sub2_spherical.pts’ 
POINTS ’chlv2’   FILE ’DATE_chlv2_sub2_spherical.pts’ 
POINTS ’dsln7’   FILE ’DATE_dsln7_sub2_spherical.pts’ 
POINTS ’wr630’   FILE ’DATE_wr630_sub2_spherical.pts’ 
POINTS ’frf8m’   FILE ’DATE_frf8m_sub2_spherical.pts’ 
$ 
SPECOUT ’44014’ SPEC2D ’DATE_b44014.sp2’                        OUTPUT 9508290000 1. HR 
SPECOUT ’chlv2’ SPEC2D ’DATE_CHLV2.sp2’                         OUTPUT 9508290000 1. HR 
SPECOUT ’dsln7’ SPEC2D ’DATE_DSLN7.sp2’                         OUTPUT 9508290000 1. HR 
SPECOUT ’wr630’ SPEC2D ’DATE_WR630.sp2’                         OUTPUT 9508290000 1. HR 
SPECOUT ’frf8m’ SPEC2D ’DATE_frf8m.sp2’                         OUTPUT 9508290000 1. HR 
$ 
 TABLE ’COMPGRID’ ’DATE_sub2.tec’   XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR 
 TABLE ’44014’    ’DATE_b44014.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR 
 TABLE ’chlv2’    ’DATE_CHVL2.bou’  XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR 
 TABLE ’dsln7’   ’DATE_DSLN7.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR 
 TABLE ’wr630’   ’DATE_WR630.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR 
 TABLE ’frf8m’   ’DATE_frf8m.bou’ XP YP TIME HS DIR PER RTP DEP OUTPUT 9508290000 1. HR 



 

 4   
 

OUTPUT QUANT PER power=0 
$ 
NUM ACC STAT mxitst=5 
COMPUTE STAT 9509080100 
COMPUTE STAT 9509080200 
COMPUTE STAT 9509080300 
COMPUTE STAT 9509080400 
COMPUTE STAT 9509080500 
COMPUTE STAT 9509080600 
COMPUTE STAT 9509080700 
COMPUTE STAT 9509080800 
COMPUTE STAT 9509080900 
STOP 

Figure 1: SWAN input file used for the parallel computations 
 
Data files  
The test case was a simulation of 1995 Hurricane Luis used by Wornom et al. (2000). In 
that study, the time-accurate version of SWAN was used with the output requested every 
hour. The wind fields consisted of separate files for each hour; thus no changes were 
necessary for the MPI quasi time-accurate runs. The boundary spectra came from a 
WAM computation on a larger regional grid and had been written 12 hours/file. To avoid 
possible file contention in sense #1, that is, different processes attempting to open the 
same file, the boundary spectra were rewritten to one file/hour (the output times were 
hourly). Each process input file contains the names of the files needed for that process; 
thus file contention in sense #1 is avoided. Each process writes its output file, which 
appears in the directory from which the program is run. 
 
MASTER program 
The major implementation effort was in creating a MASTER program to prepare the 
input files for each of the processes. The MASTER program calls the SWAN code. All 
the MPI implementation is contained in the MASTER program. Tasks consist of 
identifying keywords in the generic SWAN input file such as “ DATE_” , “ wind” , and 
“ OUTPUT” . Other key words are highlighted in bold letters in Figure 1. The MASTER 
reads the generic input file twice, the first time to determine the number of data sets to be 
computed and the second to write the input files for each process (the number of 
requested output times divided by the number of processes determines the number of data 
per process).  
 
Load balancing 
Since each process has different input/output data, file contention in sense #1 was 
avoided. The size of the data is the same for each process. However, the boundary spectra 
and wind fields are different for each process, and the number of iterations to achieve 
convergence to the wave action transport equation may vary from data set to data set and, 
therefore, from process to process. The convergences for process 34 and process 1 using 
72 processes are shown in Figures 2-3. Note that process 34 required 15 iterations to 
achieve convergence and process 1, four iterations. Note also that the level of 
convergence for process 34 is 96.60 percent after four iterations, whereas the 
convergence requirement is 98 percent, which requires 11 additional iterations. The 
developers of the SWAN code recognized this type of convergence behavior and 
included a parameter to limit the maximum number of iterations. Figure 4 compares a 
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maximum for five iterations computation with unlimited number of iterations; the effect 
on the solution is negligible. 
 

myid =  34  accuracy OK in   1.74 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  72.94 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  93.53 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  96.60 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  93.16 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  94.77 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  96.32 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  96.47 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  96.47 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  96.57 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  97.31 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  97.25 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  97.85 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  97.73 % of wet grid points ( 98.00 % required) 
myid =  34  accuracy OK in  98.02 % of wet grid points ( 98.00 % required) 

 
Figure 2: Process 34/72: max iterations = unlimited 

 
 

myid =   1  accuracy OK in   0.57 % of wet grid points ( 98.00 % required) 
myid =   1  accuracy OK in  12.22 % of wet grid points ( 98.00 % required) 
myid =   1  accuracy OK in  69.10 % of wet grid points ( 98.00 % required) 
myid =   1  accuracy OK in  98.08 % of wet grid points ( 98.00 % required) 

 
Figure 3: Process 1/72: max iteration = unlimited 
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Figure 4: The effect of the number of iterations on the results 

 
MPI speedup and efficiency results 
The speedup and efficiency using up to 72 processes are shown in Figures 5-6. The times 
include only the SWAN executions. Figure 5 shows very good scalability up to 24 
processes when the maximum iterations were limited to five. Also shown is the speedup 
when unlimited iterations were used. Figure 6 shows the MPI efficiency where it can be 
seen that the load balancing using a maximum of five iterations significantly improves 
the efficiency.  
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Figure 5: Speedup using 72 processes 

 

 
Figure 6: Efficiency using 72 processes 

 
 
 
Figure 7 shows the time/process using unlimited iterations and a maximum of five 
iterations. The time/process would be constant for ideal load balancing. While Figure 7 
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shows improved load balancing using a maximum of five iterations, it is still not ideal 
and may be the reason why the efficiency falls less than 90 percent when more than 36 
processes are used. Additional load balancing could be achieved by assigning data sets to 
a process file in such a manner that the data sets requiring the most iterations are not 
assigned to the same processor, which can occur when they are assigned contiguously as 
was done in this study.  
 
A second plausible reason for the loss in efficiency when a large number of processes are 
used may be file contention in sense #2. This occurs because of the limited number of 
pipes to the disks where the data are located and output written. Thus as the number of 
processes increases, file contention in sense #2 may result as all the processes are 
competing for the same read and write resources. The use of MPI-IO will be explored in 
future studies as a means to improve the input/output performance.  

 

 
Figure 7: Time/process with max iterations = unlimited 

 
Time-accurate vs. quasi time-accurate comparisons 
The test case of Wornom et al. (2000) for a simulation of 1995 Hurricane Luis is used to 
compare the quasi time-accurate and the time-accurate approaches. That study employed 
the time-accurate version of SWAN. The sub2 nest computation from that study, which 
used a 96-by-96 mesh with 25 frequencies and 24 angles, is examined with both 
approaches. The time integration step for the time-accurate computations was 12 minutes. 
Both the first-order time-accurate scheme and the second-order time-accurate scheme 
were used with only the second order reported. The boundary spectra were created by 
WAM run on a larger regional mesh. Computations were made with and without depth-
induced wave breaking.  
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This test case would not fall under assumption #1 as the domain spans approximately 131 
by 131 kilometers and the wind conditions are changing quickly, particularly for the 
period of 9-12 September 1995. Thus, this is an interesting test case to evaluate this 
approach.  
 
Figures 8-11 show comparisons between the time-accurate computation and quasi time-
accurate computation at five test locations. These are NOAA buoy 44014, NOAA Station 
chlv2, NOAA Station dsln7, the U.S. Army Field Research Facility (FRF) buoy wr630, 
and the FRF 8-meter array at Duck, NC, for the 10-day period from 3-12 September 
1995. NOAA buoy 44014 is the most seaward test site; the FRF 8-m array is the most 
landward site situated 900 meters offshore. The results for the FRF 8-m array included 
quadruplet wave-wave interaction (Q) and depth-induced wave breaking (B). The region 
is 2-by-2 degrees off the North Carolina coast at Duck.  
 
The differences between the quasi time-accurate approach and the time-accurate 
approach are much smaller than the differences between the two approaches and the data. 
Table 1 shows the L2 norms for both approaches. The L2 norms are very close, with the 
quasi time-accurate approach being slightly more accurate at three of the test sites. The 
norms covered the period from 3-9 September the study of Wornom et al. (2001). 
 
 

Table 1: L2 norms comparisons 
Data site Time-accurate Quasi time-accurate 

NOAA buoy 44014 0.634 0.586 
NOAA station chlv2 0.156 0.175 
NOAA station dsln7 0.554 0.573 

FRF buoy 630 0.274 0.241 
FRF 8-m array 0.146 0.136 

 
 
Table 2 shows the wall clock times for a 3-day simulation with output requested at each 
hour using the time-accurate and the quasi time-accurate approach. The wall clock times 
for a 10-day simulation are given in Table 3. The time-accurate computation was 
initialized with a stationary solution at the initial output point. This additional CPU time 
is included in Tables 2-3. 
  

Table 2: Wall clock time for 3-day simulation 
# processors Time scheme Wall clock time 
1 2nd order time-accurate 4.58 hrs 
1 1st order time-accurate 3.88 hrs 
1 2nd order quasi time-accurate 3.34 hrs 
12 2nd order quasi time-accurate 17.74 min 
24 2nd order quasi time-accurate 8.68 min 
36 2nd order quasi time-accurate 6.24 min 
72 2nd order quasi time-accurate 3.36 min 
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Table 3: Wall clock time for 10-day simulation 
# processors Time scheme Wall clock time 
1 2nd order time-accurate 15.27 hrs 
1 1st order time-accurate 12.93 hrs 
80 2nd order quasi time-accurate 9.90 min 
120 2nd order quasi time-accurate 5.72 min 
 

 

 

Figure 8: Time-accurate vs. quasi time-accurate: NOAA buoy 44014 
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Figure 9: Time-accurate vs. quasi time-accurate: NOAA station chlv2 

 

Figure 10: Time-accurate vs. quasi time-accurate: FRF buoy wr630 
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Figure 11: Time-accurate vs. quasi time-accurate: FRF 8-m array 

Resources 
The present implementation creates input files, named INPUT, and output files, named 
PRINT, on each process. A copy of the bathymetry field is also sent to each processor. 
The availability of processes determines the throughput time. The ERDC MSRC O3K 
with 512 processors is well suited for the present MPI program.  
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Conclusions  
This study introduces a quasi time-accurate approach in which the time dependency 
enters the computation through the time-varying boundary spectra and wind fields; the 
wave action transport equation is solved as a stationary problem at each requested time. 
Each individual stationary integration can be regarded as disjointed so that coarse-grain 
parallelism may be exploited. The MPI system is used to pass the data to the parallel 
processes. For the 3-day, 72-hour nonstationary test case, results were obtained in 3.31 
minutes using 72 processes. The same quasi time-accurate test case using one processor 
required 3.34 hours, thus a speedup of 59.6. The advantages of the quasi time-accurate 
approach are as follows: 
 

1. Efficient MPI parallelization. 
2. Equivalent accuracy with the time-accurate scheme with wall clock times 

reduced from hours to minutes. As such, the efficient MPI quasi time-accurate 
approach may be preferred to the time-accurate scheme for many DoD 
applications. 

3. The MPI efficiency permits routine computations with the SWAN code, 
which are not presently practical with the time-accurate version because of 
long CPU times (4b-c). 

4. The MPI version can be used in several modes: 
a. Faster turnaround times for the same cases 
b. Finer mesh resolution 
c. More frequencies and/or directional angles 

5. The implementation of the MPI quasi time-accurate approach requires very 
little changes to the SWAN code itself; thus new releases of the SWAN code 
are easily incorporated. 

6. The MPI quasi time-accurate approach was relatively easy to implement. The 
major changes were made over a 3-day period with a week for refinement and 
application to the test case. 

7. The efficient MPI quasi time-accurate approach has merits and provides rapid 
results until a parallel time-accurate version of SWAN becomes available. 
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